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Abstract

Electroencephalography (EEG) has been demonstrated
to be a valuable tool for predicting neurological outcomes
after cardiac arrest. However its complexity limits timely
interpretation. As part of George B. Moody Physionet
Challenge 2023, our team (CQUPT FP mana) proposes a
Multi-Modal Conv-Transformer network to accurately and
timely assess probability of coma recovery with complex
EEG. We select the five-minute EEGs nearest to the six
moments of 12h, 24h, 36h, 48h, 60h, and 72h, respectively,
resample them to 100Hz, filter them using a 5-order Butter-
worth bandpass filter, and slice the EEGs into 10-second
slices. The one-dimensional representation of the EEG and
the time-frequency spectrograms after a short-time Fourier
transform are then used as inputs to the network struc-
ture. Our network consists of two convolutional branches,
a transformer encoder, and a classification header. In the
end, our network scored 0.48 points in the tournament,
placing us 19th out of all challenged teams.

1. Introduction

More than 6 million cardiac arrests (CA) occur world-
wide each year, with survival rates ranging from 1% to
10% depending on geographic location [1, 2], and for the
medically advanced U.S., cardiac arrest is the third leading
cause of death, with more than 356,000 out-of-hospital car-
diac arrests (OHCA) annually [3]. Most patients who sur-
vive to hospitalization are comatose due to hypoxic brain
injury, and severe brain injury is the most common cause
of death in surviving patients [4]. In the first few days af-
ter cardiac arrest, physicians are asked to provide a prog-
nosis as to whether the patient will regain consciousness.
Different outcomes may result in continued care or with-
drawal of life support until death. However, false posi-
tives occur: poor prognostic outcomes, but actual patients
recovered better. False prognosis raises concerns. There-
fore, an early and accurate prognosis is essential for clin-

ical decision-making as well as timely intervention, and
several guidelines on CA prognosis have been proposed in
recent decades [5, 6].

The purpose of brain testing and EEG is to eliminate the
subjectivity of neurological prognosis after cardiac arrest,
and clinical neurophysiologists have recognized a number
of patterns of brain activity that help to predict the prog-
nosis of cardiac arrest, including the presences of reduced
voltage, burst suppression (alternating periods of high and
low voltage), seizures, and a variety of seizure-like pat-
terns [7]. With continued EEG monitoring, the evolu-
tion of EEG patterns can provide additional information
on prognosis [8, 9]. However, continued qualitative EEG
interpretation is laborious and expensive and requires spe-
cialized training and review by experienced senior neu-
rologists, resources that are not available in most areas.
Therefore, computer-assisted physician prediction of a pa-
tient’s ability to regain consciousness after cardiac resus-
citation is a way to improve prediction accuracy and re-
duce overhead. Automated analysis of continuous EEG
data has been shown to improve prediction accuracy and
increase the chances of brain detection that is not accessi-
ble to experts [9]. In this paper, we propose a deep learn-
ing framework based on the EEG data [10] provided by
the International Cardiac Arrest REsearch consortium (I-
CARE) to the George B. Moody PhysioNet Challenge [11]
to joint learning and prediction in the time domain and
time-frequency domain to determine whether a patient can
regain consciousness after cardiac resuscitation.

2. Methods

2.1. Dataset

The PhysioNet Challenge database from seven hospi-
tals included 1,000 subjects who collectively received over
50,000 hours of EEG monitoring. Each patient had EEG
data of different lengths of time. The recordings typi-
cally begin several hours after the arrest and have brief
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interruptions while in the ICU, so gaps in the data may
be present, and the text data recorded the patient’s age,
gender, OHCA, Shockable Rhythm, as well as outcomes
and Cerebral Performance Category (CPC) and so on.
There are other auxiliary signals such as electrocatdiogram
(ECG), electromyography (EMG) and so on in the Chal-
lenge file package. In this paper we use only EEG data.

2.2. Preprocessing

For different patients have different time series of EEG
signals, we finally selected signals from 6-time points, i.e.,
starting from the 12th hour, with each time point 12 hours
apart. If the time point we need is not present in the data
then we found the nearest one directly from around that
time point. If the time points are duplicated then one is
kept. We intercepted the first 5 minutes of the EEG at
each time point as data for this time point and resampled to
100 Hz [12]. We filtered by a 5th-order Butterworth band-
pass filter.EEGs were re-referenced to 18 bipolar chan-
nels (Fp1-F7, F7-T3, T3-T5, T5-O1, Fp2-F8, F8-T4,T4-
T6, T6-O2, Fp1-F3, F3-C3, C3-P3, P3 -O1, Fp2-F4, F4-
C4.C4-P4, P4-O2, Fz-Cz, Cz-Pz). Choosing a multi-polar
EEG can bring us more space-related information.

2.3. Feature Extraction

Because the network structure constructed in this paper
is a multi-modal two-branch structure, the features of the
input network are divided into two parts. First, we used a
sliding window of length 10 seconds to segment a 5-minute
long signal as the first part of the input X1 ∈R18×1000. The
window slides without overlap. Then we considered us-
ing the STFT as time-frequency domain transform method.
We took the time-frequency spectrogram of X1 after STFT
as the second division input X2 ∈R18×129×9. It is worth
noting that the both inputs to networks possess temporal
information, so there is no need to consider timing align-
ment.

2.4. Neural Network Structure

In recent years, multi-modal has already achieved good
results in visual recognition tasks [13]. Multi-modal in-
puts can bring more auxiliary information to the network
model to help the model improve the classification perfor-
mance. Therefore, we used the multi-modal multi-branch
network structure to determine the likelihood of a patient
being awake through EEG and its transformations. The
framework of our network model inspired by [12] and is
shown in Figure 1. Our network model is divided into three
parts: convolution, self-attention, and classification head.

In the first part, the two convolutional branches learn to
extract different features from different inputs, and for dif-

ferent modalities, we consider different sizes of convolu-
tional kernels. For 18 channels of 1D EEG, the convolution
kernel for our first convolution was set to 1x25, in order to
extract features for each channel. And the second convo-
lution used a convolution kernel of 18x1 in order to obtain
information about the relationship between the channels.
This setup allows us to more fully obtain the information of
the 1D signal. Furthermore, in the second branch, to better
utilize the corresponding 18 time-frequency spectrograms
obtained through the short-time Fourier transform we used
the results of the ResNet18 [14] classical network as a fea-
ture extractor. Finally, we concatenate the features of the
two branches. In the second part, it is the standard self-
attention part of the Transformer that extracts the global
correlation of local temporal features, or even the global
correlation between multiple modalities. The last part uses
a simple classifier consisting of fully connected layers to
achieve classification of EEGs.

2.5. Voting mechanisms

The voting mechanism, based on the principle of ma-
jority rule, can improve the accuracy and generalization of
our model predictions. We voted for the final prediction for
each patient based on the classification results of a total of
180 EEG signal slices from 6 time points.

3. Results

3.1. Settings and Metrics

Our work is based on python 3.8 and the pytorch frame-
work. MMCTNet was trained for 100 epoch on a single
GPU (NVIDIA RTX 3090 Ti with 24GB memory) with
mini-batch size 64. We chose Adam optimizer and set
the learning rate to 0.0002. For the training sample im-
balance problem, we set different weights for the cross-
entropy loss of each sample. For this Challenge, the scor-
ing metric is the true positive rate (TPR) for predicting a
poor outcome (CPC of 3, 4, or 5) given a false positive rate
(FPR) of less than or equal to 0.05 at 72 hours after return
of spontaneous circulation [15].

3.2. Challenge Score

In this section, the results of the official phases of our
method on official unpublished validation and hidden test
datasets will be shown. In the local unofficial phase, we
divided the downloaded official dataset into a training set,
validation set, and test set by 8:1:1, and the same for the
official phase. As shown in Table 1. We show in the table
the local scores as well as Area Under the Curve-Receiver
Operating Characteristic (AUC-ROC), F1-Score (F1), and
Mean Absolute Error (MAE) in both phases.
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Figure 1. MMCTNet complete structure and intra-structure details.

Table 1. Local scores for both phases and other metrics
results.

Phase Score ROC F1 MAE
Unofficial 0.59 0.78 0.75 1.32
Official 0.56 0.76 0.65 1.59

In Table 2, we show the prediction scores of MMCT-
Net at different phases, and different time points. From
the table, we can find the predictive power of our method
for both EEGs collected early in the patient’s coma and
EEGs collected subsequently. Our model is able to cap-
ture changes in EEGs.

Table 2. Local final score results at four time points.

Phase 12h 24h 48h 72h
Unofficial 0.26 0.40 0.49 0.59

Official 0.11 0.26 0.30 0.56

Above are the results of our model on the local training
set. Most important is our score on the hidden test set in
the competition. As shown in Table 3, we show the final
results of our model on the training set, validation set, and
test set after the official phase.

Table 3. PhysioNet Challenge 2023 scores for our team.

Set training validation hidden test
Score 1.000 0.567 0.480

From the metrics we can understand that there is over-
fitting in our model, and the subsequent resolution of the
overfitting problem to improve the generalization of the
model is worth being investigated.

3.3. Ablation

Our model consists of multiple modules and multiple
branches, and in order to further explore whether each
module and input is effective in improving the predic-
tion performance, we conducted a simple ablation exper-
iment on the whole model.The results of the experiment
are shown in Table 4.

Table 4. Impact on prediction after ablation of different
modules.

our base
spac
w/o

signal
w/o

encoder
w/o

param 12.33M - 0.78M 11.67M 12.21M
Score 0.59 0.37 0.56 0.19 0.07
ROC 0.78 0.70 0.73 0.72 0.75
F1 0.75 0.59 0.72 0.68 0.70

MAE 1.32 1.58 1.31 1.36 1.38

We directly used the dataset downloaded from the unof-
ficial stage for our experiments, with the same parameter
settings and dataset processing as before. The five columns
in the table show, respectively, the results for the complete
structure of MMCTNet, the results for the sample official
decision tree model, and the results for MMCTNet without
spectrograms as inputs, without one-dimensional signals
as inputs, and without transform encoder structure. With-
out the corresponding modal input we deleted the corre-
sponding structural part. From the above results, we can
conclude that each module in MMCTNet can contribute
to the prediction performance improvement, especially the
encoder part, which is particularly significant in terms of
score. This global long-range dependency is very effective
for feature extraction of signals possessing temporal fea-
tures. The time-frequency spectrogram as a multi-modal
auxiliary input has an improvement on all types of metrics.
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4. Discussion and Conclusion

In this paper, we propose a multi-branch multi-modal
network structure to predict whether a patient will regain
consciousness or not. Multi-modal can assist each other
to provide more adequate feature information, and the
network structure of the combination of convolution and
transformer has been proved to be both locally and glob-
ally oriented in its feature extraction. We also consider the
use of pre-trained models to improve the performance of
our model. However, our structure has modifications to
the classical model in the implementation details, so we
cannot directly use the model parameters that are publicly
available on the web, so we used a large heart sound dataset
in hand to train the model for migration learning, but the
results are not ideal at the moment. We believe that the
model has not reached its best performance, and thus, how
to further improve the model performance is a direction
that can be explored in the future. In the end, our proposed
structure scored 0.48 in the challenge, placing it 19th out
of all the teams that made it to the official stage.
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